Product Description
China 55kw 75hp Direct Driven Rotary Screw Air Compressor
Product Description
Noise enclosure
It is designed into fully-closed mute box, in which sound-absorbing sponge are attached for effective absorption of noise,thereby making the noise 3-5dB(A) lower than that made by the compressors of the same kind.It is reasonably structured overall and very easy to maintain and repair.
Control Panel
Intelligent microcomputer-based control technology can monitor and control in all aspects the complete machine following your instructions. Remote control realizes unattended operation, and the user-friendly human-machine interface displays instructions and parameters in written form. Also, it can function to self diagnose faults,give warning and automatically regulate the capacity.
Motor
First-class motors are adopted, with the level of protection being Ip54 and insulation level being F.overall and very easy to maintain and repair.
Cooler
It is designed for low temperature difference to increase heat exchange area, and ideal to be applied to high-temperature and high-humidity operating environment.
Configuration characteristics
1. A precisely-made central bracket is used to keep the motor aligned permanently with the bare compressor
2. A highly resilient coupling is adopted to make the compressor operate smoothly, and the elastomer is long in useful life
3. The exhaust pipe adopts double-layer bellows, and the oil circuit adopts specially-made temperature-resistant 125º C high-pressure hose
4. For the extremely high temperature condition in some districts, the large-area plate heat exchange and high-efficiency water chiller are used
5. High-quality shaft coupling elastic body can buffer and compensate for the imbalanced moment of operation.
Product Parameters
|
Model |
Air flow |
pressure |
Motor power |
Caliber |
Noise |
Cooling air volume |
Cooling water |
|
m ³/min |
MPa |
kW |
dB(A) |
m ³/min |
L/min |
||
|
LA-7GA |
1.35 |
0.7 |
7.5 |
G1/2 |
62±2 |
32.5 |
|
|
1.25 |
0.8 |
||||||
|
1.01 |
1 |
||||||
|
0.9 |
1.25 |
||||||
|
LA-11GA |
1.8 |
0.7 |
11 |
G3/4 |
63±2 |
50 |
|
|
1.78 |
0.8 |
||||||
|
1.55 |
1 |
||||||
|
1.3 |
1.25 |
||||||
|
LA-15GA |
2.5 |
0.7 |
15 |
G3/4 |
63±2 |
50 |
|
|
2.4 |
0.8 |
||||||
|
2.1 |
1 |
||||||
|
1.8 |
1.25 |
||||||
|
LA-18GA |
3.1 |
0.7 |
18.5 |
G1 |
64±2 |
100 |
|
|
3 |
0.8 |
||||||
|
2.7 |
1 |
||||||
|
2.3 |
1.25 |
||||||
|
LA-22GA/W |
3.8 |
0.7 |
22 |
G1 |
64±2 |
110 |
14.5 |
|
3.7 |
0.8 |
||||||
|
3.2 |
1 |
||||||
|
2.8 |
1.25 |
||||||
|
LA-30GA/W |
5.4 |
0.7 |
30 |
G1 |
65±2 |
145 |
20 |
|
5.25 |
0.8 |
||||||
|
4.5 |
1 |
||||||
|
3.9 |
1.25 |
||||||
|
LA-37GA/W |
6.6 |
0.7 |
37 |
G1 ½ |
65±2 |
145 |
25 |
|
6.6 |
0.8 |
||||||
|
5.9 |
1 |
||||||
|
4.8 |
1.25 |
||||||
|
LA-45GA/W |
8.4 |
0.7 |
45 |
G1 ½ |
66±2 |
185 |
30 |
|
8 |
0.8 |
||||||
|
7.4 |
1 |
||||||
|
6.4 |
1.25 |
||||||
|
LA-55GA/W |
10.8 |
0.7 |
55 |
G2 |
68±2 |
220 |
39.9 |
|
10 |
0.8 |
||||||
|
9.1 |
1 |
||||||
|
8 |
1.25 |
||||||
|
LA-75GA/W |
13.8 |
0.7 |
75 |
G2 |
72±2 |
250 |
51 |
|
13 |
0.8 |
||||||
|
11.8 |
1 |
||||||
|
10.3 |
1.25 |
||||||
|
LA-90GA/W |
17.1 |
0.7 |
90 |
G2 |
72±2 |
270 |
61 |
|
17 |
0.8 |
||||||
|
15.2 |
1 |
||||||
|
12.5 |
1.25 |
||||||
|
LA-110GA/W |
21.2 |
0.7 |
110 |
G2 1/2 |
75±2 |
420 |
79 |
|
20 |
0.8 |
||||||
|
17.1 |
1 |
||||||
|
15.4 |
1.25 |
||||||
|
LA-132GA/W |
25 |
0.7 |
132 |
G2 1/2 |
75±2 |
460 |
91 |
|
24.3 |
0.8 |
||||||
|
21 |
1 |
||||||
|
17.5 |
1.25 |
||||||
|
LA-160GA/W |
30.5 |
0.7 |
160 |
G2 1/2 |
75±2 |
510 |
105 |
|
29.2 |
0.8 |
||||||
|
26.9 |
1 |
||||||
|
22.5 |
1.25 |
||||||
|
LA-185GA/W |
32.9 |
0.7 |
185 |
G2 1/2 |
75±2 |
510 |
123 |
|
31.9 |
0.8 |
||||||
|
29.1 |
1 |
||||||
|
25.5 |
1.25 |
||||||
|
LA-220GA/W |
37 |
0.7 |
220 |
DN80 |
75±2 |
710 |
144 |
|
36.3 |
0.8 |
||||||
|
31.63 |
1 |
||||||
|
28.55 |
1.25 |
||||||
|
LA-250GA/W |
45.8 |
0.7 |
250 |
DN80 |
75±2 |
800 |
163 |
|
44 |
0.8 |
||||||
|
39 |
1 |
||||||
|
35.5 |
1.25 |
Product Picture
Company Profile
FAQ
1: What kind terms of payment can be accepted?
A: For terms of payment, L/C, T/T, D/A, D/P, Western Union (can be) could accepted.
2: What certificates are available in Machinery?
A: For the certificate, we have CE, ISO, Gost, EPA(USA)CCC.
3: What about the delivery time?
A: 7-30 days after receiving the deposit.
4: What about the warranty time?
A: 12 months after shipment or 2000 working hours, whichever occuts first.
5. What about the Minimum Order Quantity?
A: The MOQ is 1 pcs.
| After-sales Service: | Overseas Service Center Available |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.
editor by CX 2023-10-09
.webp)
.webp)
.webp)

